

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

NAVAL POSTGRADUATE SCHOOL Monterey, California OTIC FILE COPY

THESIS

DEVELOPMENT OF A DATA ANALYSIS SYSTEM FOR THE DETECTION OF LOWER LEVEL ATMOSPHERIC TURBULENCE WITH AN ACOUSTIC SOUNDER

by

Michael Raymond Wroblewski

June 1987

Thesis Advisor:

D. L. Walters

Approved for public release; distribution is unlimited

87 9 25 132

SECURITY		

the state of the s

SECURITY CLASSIFICATION OF THIS PAGE						
REPORT DOCUMENTATION PAGE						
1. REPORT SECURITY CLASSIFICATION Unclassified	16 RESTRICTIVE MARKINGS					
28 SECURITY CLASSIFICATION AUTHORITY	3 DISTRIBUTION AVAILABILITY OF REPORT					
26 DECLASSIFICATION DOWNGRADING SCHED	JLE	Approved for public release;				
	(0//)	distribution is unlimited				
4 PERFORMING ORGANIZATION REPORT NUMBER(S)		5 MONITORING ORGANIZATION REPORT NUMBER(S)				
6. NAME OF PERFORMING ORGANIZATION	66 OFFICE SYMBOL (If applicable)	78 NAME OF MONITORING ORGANIZATION				
Naval Postgraduate Schoo	61	Naval Postgraduate School				
6c ADDRESS (City State, and 2IP Code)		7b ADDRESS (City, State, and ZIP Code)				
Monterey, California 93943-5000		Monterey, California 93943-5000				
Ba NAME OF FUNDING SPONSORING Bb OFFICE SYMBOL (If applicable)		9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
BC ADDRESS (City State, and ZIP Code)		10 SOURCE OF	FUNDING NUMBERS			
of Abbaess (City State, and 21r Code)		PROGRAM	PROJECT	TASK	WORK	
		ELEMENT NO	NO	NO	ACCESS	SON NO
11 TILE (include Security Classification)						
DEVELOPMENT OF A DATA . LOWER LEVEL ATMOSPHERIO						
" PERSONAL AUTHOR(S)	2 TORBOHLINCH	WIIII 2114 21	ecopite bo	ONDE		
Wroblewski, Michael R						
"35 TYPE OF REPORT 135 TIME COVERED 15 FROM		14 DATE OF REPORT (Year Month Day) 15 PAGE (OUNT 1987 June 100				
16 SUPPLEMENTARY NOTATION	<u></u>		June			
COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)					(r)	
		Radar, Echosounder, Acoustic				
	Sounder,	Atmosphe	ric Turbul	ence	Profiles	3
3 ABSTRACT (Continue on reverse if necessary and identify by block number)						
Atmospheric density fluctuations induce phase perturbations that degrade the spatial coherence of a laser beam propagating through the atmoshpere. These degradations spread the laser beam and alter the centroid and intensity profile stochastically. Turbulent conditions are found at virtually all levels of the atmosphere. A substantial fraction of the optical turbulence along a vertical path arises from the heat flux between the atmosphere and the Earth's surface. This type of turbulence is typically within the first 100 to 200 meters above the surface. During this thesis research, a high frequency acoustic sounder was developed to analyze this turbulent layer. The 1) DOTA BUT ON AVAILABILITY OF ABSTRACT DOTIC USERS AMME OF RESPONSIBLE NOVIDUAL 210 MAME OF RESPONSIBLE NOVIDUAL 211 ABSTRACT SECURITY (LASSIFICATION Unclassified						
Donald L. Walters	408-64	6-2267	1	61We		

DD FORM 1473, 84 MAR

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enforce)
19. (continued)
primary focus was the development of the command and control software required to coordinate the data collection and reduction. The system was used at two sites and should prove useful in quantifying the effects of optical turbulence within the surface boundary layer on laser and optical system performance.

Approved for public release; distribution is unlimited.

Development of a Data Analysis System for the Detection of Lower Level Atmospheric Turbulence with an Acoustic Sounder

bу

Michael Raymond Wroblewski Lieutenant, United States Coast Guard B.S., United States Coast Guard Academy, 1980

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL June 1987

Author:

Michael R. Wroblewski

Mould Walters, Thesis Advisor

Samund a mulus

Edmund A, Milne, Second Reader

Karlheinz E. Woehler, Chairman,
Department of Physics

Gordon E. Schacher, Dean of Science and

Engineering

ABSTRACT

/ Atmospheric density fluctuations induce perturbations that degrade the spatial coherence of a laser the atmosphere. beam propagating through degradations spread the laser beam and alter the centroid and intensity profile stochastically. Turbulent conditions are found at virtually all levels of the atmosphere. A substantial fraction of the optical turbulence along a vertical path arises from the heat flux between the atmosphere and the Earth's surface. This type of turbulence is typically within the first 100 to 200 meters above the surface.

During this thesis research, a high frequency acoustic sounder was developed to analyze this turbulent layer. The primary focus was the development of the command and control software required to coordinate the data collection and reduction. The system was used at two sites and should prove useful in quantifying the effects of optical turbulence within the surface boundary layer on laser and optical system performance.

TABLE OF CONTENTS

I.	INTROI	DUCTION	• • • • • • • • • • • • • • • • • • • •	7
II.	BACKGE	ROUND	• • • • • • • • • • • • • • • • • • • •	10
.111	SYSTEM	M DESIGN AND EQUIPMENT DEVELOPME	NT	14
	A. HA	ARDWARE	• • • • • • • • • • • • • • • • • • • •	. 14
	B. SC	OFTWARE		19
IV.	DATA A	ANALYSIS		. 25
	A . E C	CHOSOUNDER PERFORMANCE		25
	B. SI	ITE EVALUATION		. 25
٧.	CONCLU	USIONS AND RECOMMENDATIONS	• • • • • • • • • • • • • • • • • • • •	40
APPENI	A X10	ACOUSTIC ECHOSOUNDER PROGRAM	· · · · · · · · · · · · · · · · · · ·	42
APPENI	OIX B	SPEAKER AND ARRAY ANALYSIS		60
APPENI	OIX C	ENCLOSURE DESIGN		. 70
APPENI	OIX D	ECHOSOUNDER OUTPUT		79
LIST (F REFE	ERENCES		. 96
INITIA	AL DIST	TRIBUTION LIST		. 99

Acces	on For	7	
DTIC	ounced		
By			
Availability Cod es			
Dist	Avail and Specia		
A-1			

ACKNOWLEDGEMENTS

I express my gratitude to all who have made my graduation from the Naval Postgraduate School a reality. First and foremost I would like to thank my wife, Beth. Without her support and love I doubt I ever would have been able to accomplish this task.

I would also like to say "Thanks" to Professor Donald Walters who gave of his time and knowledge. He supplied us with the tools and motivation (As he always said: "Well, if you want to graduate ...") to complete the job.

Finally, to my friend, colleague, and partner on this project, LT. Frank Weingartner, I wish the best of the future to him and his fiancee' Karen.

I. INTRODUCTION

A coherent laser beam propagating through the atmosphere is very susceptible to numerous turbulence inflicted degradations. As electromagnetic waves transit the turbulent regions, atmospheric irregularities randomize the amplitude and phase of the wave. In order to quantify the altitude dependence of the atmospheric turbulence, a high resolution turbulence profiler is needed. Acoustic echosounders are frequently used to detect and measure atmospheric density and velocity irregularities resulting from air currents, temperature inversions, humidity variations, mechanical turbulence and other density fluctuations.

Presently two atmospheric optical parameters, the spatial coherence length (r0) and the isoplanatic angle (80) are measures of the perturbation of an electromagnetic wave propagating through the atmosphere, and are accurately measured by optical systems developed by Walters [Refs. 1 and 2]. Although these systems measure a path integral of atmospheric turbulence with high accuracy, a major drawback of each system is that no provision is available for determining the height of the atmospheric disruptions. If these disturbances are found to exist very near the surface, it may be possible to negate their effect by

elevating the optical systems or controlling the generation of turbulence.

This thesis deals with the design, construction and implementation of a high frequency, acoustic echosounder which will accurately analyze the atmospheric density fluctuations within approximately 200 meters of surface. As this project is a product of the research and efforts of two students, the work was appropriately divided. My particular task was to devise a computer program which would control all aspects of the echosounder operation. Areas of particular interest were the integration of hardware and software within the data acquistion system, developing plotting algorithms, controlling the system timing, and setting the input parameters which determine the range and sensitivity of the device. My colleage, LT. Weingartner [Ref. 3], dedicated his efforts toward the actual design and hardware development of the echosounder.

Acoustic echosounders have been developed and in use for many years and have proven to be valuable probes for analyzing the structure and dynamics of the lower atmosphere [Refs. 4 through 7]. Devices similar to ours have been used to obtain profiles of the atmospheric density and temperature fluctuations [Refs. 8 and 9]. Our device used a high speed HP217 computer to control and monitor the echosounder which provided real time

information. Additionally, we had the ability to store and reproduce the atmospheric profile plots at will. This information was crucial in analyzing the atmospheric turbulence degradations on laser and electro-optical system's performance.

This document shall address the theoretical background of acoustic sounder operation in Chapter II. Chapter III shall present a synopsis of the system design and associated software. A summary of actual data collected at two sites is analyzed in Chapter IV and Chapter V discusses the conclusions and recommendations found as a result of our research.

II. BACKGROUND

Acoustic echosounders probe the atmosphere by transmitting a pulse of acoustic power which is subsequently scattered back from the atmosphere by temperature and velocity inhomogeneities. The echosounder (echosonde) equation, often referred to as the radar equation in meteorology, is used to determine the backscattered acoustic power. This equation is summarized by Neff in Reference 10 and is based upon the work of Tatarski [Ref. 11] and Little [Ref. 5].

 $PR = ER[PTET][exp(-2\alpha R)][\sigma o(R,f)][\frac{1}{2}cT][AGR^{-2}]$

where

PR is the electrical power returned from a range R.

PT is the electrical power transmitted at frequency f.

En is the efficiency of conversion from acoustic power to electrical power by the transducer,

Et is the efficiency of conversion from electrical power to acoustic power by the transducer,

 $\exp(-2\alpha R)$ is the round trip power loss due to attenuation where α is the average attenuation (meters-1) to the scattering volume at the range R (meters),

 $\sigma_0(R,f)$ is the scattering cross section per unit volume

at a distance R and frequency f,

c is the local speed of sound (meters/second),

τ is the pulse length (seconds),

A is the aperture area of the antenna (meters²),

R is the range (meters), and

G is the effective-aperture factor of the antenna.

Empirically measuring or calculating the values for all other terms, one can use this equation to determine $\sigma_0(R,f)$, the scattering cross section per unit volume; that is, the fraction of incident power backscattered per unit distance into a unit solid angle at a frequency f. Based upon experimental results, Tatarski [Ref. 11] expresses the acoustic backscatter cross section per unit volume, $\sigma_0(R,f)$, in the equation,

$$c_{T^2}$$
 c_{T^2}
 c_{T^2}
 c_{T^2}
 c_{T^2}

where

 $k=2\pi/\lambda$ is the incident acoustic wavenumber at wavelength λ ,

To is the local mean temperature in degrees Kelvin, and CT^2 is the temperature structure parameter.

Combining this equation with the echosonde equation, one obtains a volume-averaged measure of CT2.

$$Cr^{2} = \frac{1}{0.0039} \frac{1}{ERET} \frac{1}{C\tau} \frac{2}{k^{-1}/3} \frac{1}{---} \frac{PR}{AG} \frac{1}{PT}$$

Hall and Wescott [Ref. 12] calculated a beam-shape compensation factor of 0.40 for a piston source antenna with a uniformly illuminated square aperture. This value is the same as the effective-aperture factor, G, and can be substituted into the above equation. Approximating the aperture area of the antenna to be equivalent to 25 times the aperture area of a single speaker having a diameter of 7.620 centimeters, we get a value of 0.1140 square meters. Combining these values with the numerical constants in the above equation, we can simplify the equation for Cr².

$$Cr^2 = 11245 - - - To^2 k^{-1/3} - - R^2 exp(2\alpha R)$$
ERET $C\tau$ PT

The acousto-electrical efficiency factors for our echosounder were measured with a calibrated microphone and an anechoic chamber. The calculated values for ER and ET are each 0.5. Substituting these values into the above equation, we can further simplify the equation for CT^2 .

$$T0^2$$
 PR
 $CT^2 = 44980 \text{ k}^{-1/3}$ ---- $R^2 \exp(2\alpha R)$
 CT PT

The above equation was incorporated into the computer program that provides the system control, data acquistion and data processing techniques [Appendix A]. The reduced data was then used to measure the temperature structure parameter as a function of time of day and altitude for various sites.

III. SYSTEM DESIGN AND EQUIPMENT DEVELOPMENT

A. HARDWARE

Most of the hardware used in this system was standard scientific equipment and is illustrated in Figure 1. The

Fig. 1. Echosounder Equipment Arrangement

pieces which were specially designed by LT Weingartner [Ref. 3] are the acoustic array and the enclosure for this array. The design considerations for the speakers and the array format are given in Appendix B and the design of the enclosure to house this array is outlined in Appendix C. Aside from these two pieces of equipment, there are primarily six other components which comprise this echosounder. Below is a brief description of each of these additional components.

1. HP200 Series Computer

Hewlett-Packard (HP) 200 Series Computer includes a 20 megabyte hard disk drive, a floppy disk drive and an associated printer and monitor. The HP200 Series Computer was the central control component for the entire echosounder arrangement. The computer used was an HP21/ programmed in Basic 3.0 and equipped with an Infotek BC208 Basic Compiler and an Infotek FP210 Floating Foint Accelerator to enhance the speed of program execution. The program defined all parameters for the HP3314A Function Generator as well as execute the trigger command which produced the echosounder transmitted accustic pulse. The computer also received the data from the acoustic array via the pre-amplifier, bandpass filter and analog to digital converter. The computer then conducted the data reduction produce and display a high resolution routines to atmospheric profile.

2. HP3314A Function Generator

The Hewlett-Packard (HP) 3314A Function Generator was a multimode function generator capable of providing sine, square and triangular wave functions as well as any desired waveform ranging in frequency from 0.001 Hertz to 19.999 Megahertz. The HP3314A Function Generator was used to supply a pulse of an integer number (usually 100) of sinusoidal cycles of constant amplitude to the QSC Model 1700 Audio Amplifier. A constant frequency setting of 5000 Hertz was used for all data runs.

3. QSC Model 1700 Audio Amplifier

The QSC Model 1700 Audio Amplifier is a high power amplifier which can supply 350 watts over an 8 ohm load. This amplifier was used to boost the output voltage of the function generator by a factor of 20 from 1.5 volts to 30 volts. The power supplied to each speaker in the array during operation was then 37.5 watts.

4. Pre-amplifier

The pre-amplifier was designed and constructed by Walters [Ref. 13] to supply a gain of 1000 to the returned signal and isolate the data acquistion components from the transmitted pulse. The pre-amplifier may be thought of as a safety and switching mechanism for the system. An LT 1037 and an LT 1007 Operational Amplifier were selected for use in the pre-amplifier based upon their low noise properties which were evaluated by physically incorporating

them into the device and measuring their noise and gain characteristics with an HP3561 Spectrum Analyzer. The diodes used are IN 4000 Series Rectifiers capable of carrying one ampere. These rectifiers serve to isolate the power amplifier from the amplifier input stage and to limit the voltage applied to the operational amplifiers. The electrical diagram of this device is outlined Figure 2.

Fig. 2. Schematic of Pre-amplifier

5. Rockland Wavetek Model 852 Filter

The Rockland Wavetek Model 852 Filter operated as a 48 db per octave bandpass filter to suppress the broadband noise of the system. High and low bandpass settings of 5500 Hertz and 4500 Hertz respectively were used. The filter response at these settings is illustrated in Figure 3.

Fig. 3. Bandpass Filter Response

The three db (half power) bandwidth is approximately 1 KHz wide. Although it would be desirable to reduce the bandpass to between 50 and 100 Hertz without impairing signal response, the Rockland Wavetek Model 852 Filter was

the best filter available. It performed adequately in spite of the large 1KHz bandwidth.

6. Infotek AD200 Analog to Digital Converter

An Infotek AD200 12 bit Analog to Digital Converter was used to digitize the signal voltage for the computer system at a 12.5 to 20 KHz sample rate.

B. SOFTWARE

The software and HP200 Series Computer system were responsible for controlling and monitoring every operational phase of the hardware components. The program which accomplished this task was entitled "ACRDR" and is listed in Appendix A. This program was modeled after a program written by Walters [Ref. 13] but each program performs a distinctly different computational task. This program was written in HP Basic 3.0 and was compiled by an Infotek BC203 Basic Compiler to enhance the speed of execution.

The program "ACRDR" is easily broken down into a number of blocks and subroutines which performed specific operations. These sections are outlined in a flowchart (Fig. 4). Each block is straightforward in its purpose, and the program is designed to be as helpful to the user as possible. As a prologue to the actual program code, there is a listing of all the program variables with a short description of their use. Such a listing familiarizes a user with the computations to be made and also provides

quick references for any future modifications to be implemented.

Fig. 4. Flowchart of Fundamental Program Operations

The initialization procedures which set all the parameters necessary for data collection follow the variable definition section. These parameters control such things as the contrast between background and return signal and the setting of the computer's internal clock. All

options of the HP3314A Function Generator are decided by the user at this phase. Another initialization involves preparing the Infotek AD200 Analog to Digital Converter for operation. Finally, internal arrays are dimensioned, integer variables are defined and the computer function keys are redefined to suit the "ACRDR" program.

Now that the system is ready to operate, certain quantities must be determined based upon atmospheric conditions at the time of data collection. From the ambient temperature, a speed of sound in air is determined by the equation in Kinsler, et al, [Ref. 14: p. 106]

$$C = C_0 [1 + (T/273)]^{1/2}$$
,

where

C is the local speed of sound.

 \mathbb{C}_{0} is the speed of sound in air at 0° Celsius (331.6 m/s), and

T is the local temperature in degrees Celsius.

Using this speed with a user decided sampling frequency and number of data points, the maximum range of the traces is determined by the relation.

RANGE = $C/2 \cdot 1/(SAMPLE FREQUENCY) \cdot N$,

where

RANGE is the range of the echosounder in meters,
SAMPLE FREQUENCY is the user desired rate of data

acquisition, and

N is the number of data points per trace.

Typically, the values of many of the parameters are not varied. The value of N above is almost always taken to be the allowed maximum of 16301 data points and the speed of sound can be rafely estimated to be 340 m/s at room temperature. By using a typical sample frequency of 20000 Hz, a range of approximately 135 meters is obtained.

Another parameter determined is the atmospheric attenuation coefficient. This calculation is done in a subroutine obtained from Reference 15 and is necessary in this program for the calculation of CT². Other computations made prior to program execution include the pulse length, wavenumber, and the D-C offset of the equipment.

At this point, the computer is finally ready for data collection. The screen setup displays a distance versus time plot and the internal clock of the computer is synchronized with the pulse from the HP3314A Function Generator. Following transmission of the pulse, the return signal is received, digitized, stored in an array and data reduction commences. A block averaging technique is used in which a block of data points the size of the number of emitted cycles is summed and averaged. Returns are plotted as darkened areas on the echosounder traces with the intensity of the darkened area linearly related to the

magnitude of the return signal. This same procedure is used in the computation of Cr2 with some very important differences. Aside from simply correcting for πr^2 spherical divergence, CT2 is corrected for electronic gain, the ratio of power returned to power transmitted, the efficiency of the speakers as transmitters and receivers. the area of the speaker array, the atmospheric attenuation, the pulse length, the temperature, the scattering cross section per unit volume at a specific range and frequency and finally the effective aperture factor of the antenna. Additionally, CT2(Range) is averaged for a particular altitude over 15 minute intervals. Finally, after each pulse is reduced, a corresponding mean square noise level is determined. This is done by averaging each block average at maximum range until at least ten values have been used in the average. An upper limit of five over the average noise figure (this corresponds to voltage fluctuations on the order of 10⁻⁷ volts) is set on the routine to avoid averaging any strong return signals or anomalies such as passing aircraft. After the ten values are averaged, every subsequent pulse is averaged into all the preceding noise levels and removed from each subsequent return signal.

Ultimately, after each 15 minute interval, or at the users request, the display terminal image is printed. At this time the CT^2 computations are conducted and plotted on

the screen and printer as range versus logio of CT^2 . Upon completion of the printing of these plots, the system begins the data processing for the next 15 minute interval.

There are certain options built into the program to allow a user to change various aspects of operation. The function keys allow the user to change the local temperature, sample frequency or intensity factor during program execution. Additionally, the user can quit or restart the program, print the partial trace on the screen or elect to save a trace on a floppy disc. The save routine is invoked for the subsequent 15 minute interval after the appropriate function key is depressed. Saving a future trace may seem awkward, especially if a user would like to keep an interesting trace which is presently on the terminal. This problem cannot be readily solved unless each trace is recorded to disc without user intervention. At present, this is not done because only 8 traces (2 hours of data) can be written to a floppy disc before it is full.

IV. DATA ANALYSIS

A. ECHOSOUNDER PERFORMANCE

An analysis of the acoustic echosounder output was conducted to determine the validity of previously determined echosounder parameters. The e-1 decay time constant for applied voltage was calculated in Appendix B to be approximately 900 ms or for convenience, 1 ms. Reviewing typical echosounder traces and CT2 plots [Appendix D], it was evident that the recovery time was typically found to be on the order of 33 ms or roughly six meters past the end of the transmitted pulse length of 3.4 meters. The recovery time is consistent with the time required for the 30 volts on the drivers to decay to the microvolt level. A more detailed analysis of the hardware is found in Reference 3.

B. SITE EVALUATION

Echosounder data was collected at two different locations. The primary data collection site was the upper roof of Spanagel Hall at the Naval Postgraduate School, Monterey, California. This site was chosen simply for convenience. Data gathered at this location is believed to represent the California coast during the spring near sea level. The second site chosen was in the vicinity of the 24 inch telescope at Lick Observatory, San Jose,

California. This site is located atop Mt. Hamilton at an altitude of approximately 5700 feet and nearly 20 miles inland from the coast.

These two data collection sites represent areas of differing atmospheric air pressures, water vapor pressures. local temperature ranges, and local wind velocity ranges. These characteristics all play important roles in effecting the local atmospheric turbulent conditions and thereby the atmospheric structure parameter, CT^2 .

In addition to collecting echosounder data at Lick Observatory, simultaneous measurements of the isoplanatic angle (00) and spatial coherence length (r0) were made with systems developed by Walters [Refs. 1 and 2]. A basic knowledge of these two systems is necessary to understand the correlation procedures made. The isoplanatic angle (00) is primarily an upper atmospheric measurement which indicates atmospheric disruptions at a range of 2 to 15 kilometers. The spatial coherence length (r0) is a measure of the effects of the entire atmospheric blanket on coherent light transmission. A close comparison of all three data sets should give us an accurate description of both the lower and upper troposphere as well as the stratosphere above.

Based upon isoplanatic angle ($\theta 0$) and spatial coherence length (r 0) measurements at Mt. Wilson in California, a strong correlation between the two measurements occurs if

the low altitude boundary layer contribution is sufficiently small. This strong correlation helps to reinforce the overall description of the atmosphere at the time of data collection. Figures 5 and 6 graphically illustrate the atmospheric measurements made at Mt. Wilson on 2 April 1987 by Walters.

Fig. 5. Isoplanatic Angle Measurements, Mt. Wilson

Fig. 6. Spatial Coherence Length Measurements, Mt. Wilson

The strong correlation between the isoplanatic angle (θo) and the spatial coherence length (ro) is especially evident between the hours of 0700 and 1300 universal time. The close tracking of these two measurements during this time interval indicate that the upper atmospheric conditions, as measured by θo , are dominating the entire atmospheric profile as measured by ro. Unfortunately, the existence or non-existence of any turbulent surface effects cannot be ascertained by the employment of the above two However, employment of these two systems systems alone.

together with the acoustic echosounder should enable us to produce a complete atmospheric profile with strong correlation between all three atmospheric measurements.

On 9 and 10 April 1987, all three systems were operated at Lick Observatory. Again, a good correlation between the isoplanatic angle (θ_0) and the spatial coherence length (ro) measurements was noted. In addition, a strong correlation between the spatial coherence length (ro) and echosounder measurements was present. A comparison of the atmospheric data in Figures 7 and 8 shows a good correlation between the two parameters especially during the 0930 to 1130 time interval on 9 April 1987. However, during subsequent hours the isoplanatic angle (θ0) measurements remain high (~12 µrad) indicating relatively calm turbulent conditions in the upper atmosphere while the spatial coherence length (ro) values drop sharply after 12:00 Universal Time indicating dominant and increasing lower atmospheric turbulence. This increase in the low level turbulence should be evident in the echosounder data commencing around 1200 universal time (0400 local standard time) on 9 April 1987. A comparison of the echosounder data in Figures 9 through 11 illustrates this increase in the local surface turbulence.

Fig. 7. Isoplanatic Angle Measurements, Lick Observatory

Fig. 8. Spatial Coherence Length Measurements Lick Observatory

Fig. 9. Echosounder Trace, Lick Observatory

Fig. 10. Echosounder Trace, Lick Observatory

Fig. 11. Echosounder Trace, Lick Observatory

The strong correlation between the echosounder data around 4:00 to 5:00 Standard Time and the ro measurements around 12:00 Universal Time combined with the lack of correlation between the θo and ro measurements indicate that the lower atmospheric and surface turbulence are dominating the atmospheric profile during this time period.

Data collected on 10 April 1987, again illustrate the strong correlation between the three atmospheric measurements made. A comparison of the 80 and romeasurements during the time interval of 0700 and 1300 Universal Time indicate steady turbulent conditions in the upper atmosphere and greatly varying turbulent conditions

at lower atmospheric levels. This is evident in Figures 12 and 13 by the consistent values of 80 during the time period compared with the steady increase and eventual decline of the ro values during the same time interval. The trace variations in Figure 13 during the hours of 0800 and 1200 are indicative of a period of decreasing lower atmospheric or surface turbulence followed by the onset of an increasingly turbulent period around 1200. This turbulent trend is strongly supported by the echosounder data in Figures 14 through 21.

Fig. 12. Isoplanatic Angle Measurements, Lick Observatory

Fig. 13. Spatial Coherence Length Measurements, Lick Observatory

Fig. 14. Echosounder Trace, Lick Observatory

Fig. 15. Echosounder Trace, Lick Observatory

Fig. 16. Echosounder Trace, Lick Observatory

Fig. 17. Echosounder Trace, Lick Observatory

Fig. 18. Echosounder Trace, Lick Observatory

Fig. 19. Echosounder Trace, Lick Observatory

Fig. 20. Echosounder Trace, Lick Observatory

Fig. 21. Echosounder Trace, Lick Observatory

The large 200mm coherence lengths around 11:00 Universal Time are consistent with the low turbulence evident in the echosounder profiles around 3:00 Standard Time followed by a pre-dawn increase in the surface turbulence.

Only acoustic sounder atmospheric measurements were made on the upper roof of Spanagel Hall at the Naval Postgraduate School. Data runs on 26 and 27 April 1987, included both echosounder data and the associated CT² plots. A representative sample of the data collected during this period is included in Appendix D. Of particular interest is the data in Figure 22, which shows the maritime boundary inversion layer at about 100m and being perturbed by convective plumes at lower altitudes.

Fig. 22. Echosounder Trace and CT2 Plot, NPS Roof

V. CONCLUSIONS AND RECOMMENDATIONS

A high frequency (5KHz) phased array echosounder constructed to measure low level turbulence appears to work within the 10 to 135 meter altitude range. When using the device, detailed profiles of the short range atmospheric density fluctuations were obtained. The profiles were found to correlate very well with the measurements of the isoplanatic angle (00) and the spatial coherence length (r0) during periods of simultaneous operation. This short range echosounder, when used in conjunction with the other atmospheric measuring devices, is an invaluable tool. The graphical output provides us with a more complete description of the atmosphere that can be used to calculate Cn^2 , the atmospheric index of refraction structure parameter.

Further software development such as the incorporation of Fast Fourier Transform routines into the echosounder program will determine the radial velocity profile of the return signal. Such an improvement will determine the velocity of the probed air masses and plot these echosounder traces as a function of color intensity.

Other areas of further reasearch include the design and testing of different array patterns. One such pattern, the hexagonal array, is already undergoing tests. As the

speaker array evolves, it is also evident that the enclosure must follow suit to accomodate the new array design and associated beam patterns. Further improvements in software routines are also inevitable. It is always desirable to store on a disc all data collected at a site. Presently, the floppy disc capacity is inadequate for the storage of more than two hours of data. Furthermore, if FFT and Doppler routines are to be added, the computational speed of the computer will inhibit the pulse repetition rate. A special data acquisition technique called "Direct Memory Access" may then have to be introduced into the HP computer to allow simultaneous data collection and processing.

Finally, this product may be used in various applications not already addressed. One such use may be to measure windshear at airports. Other researchers have expressed interest in using the echosounder to measure arctic atmospheric conditions during meteorological surveys. Assuredly, as the device evolves into a more compact and highly efficient instrument, its range of application will continue to expand.

APPENDIX A

ACOUSTIC ECHOSOUNDER PROGRAM

```
10
 20
                                     ACRDR
       ! * COMPUTER SOFTWARE WRITTEN BT LT. M. WROBLEWSKI FOR AN
 30
 40
              ECHOSOUNDER BUILT FOR A MASTERS OF SCIENCE THESIS
50
                 BY LT. M. WROBLEWSKI AND LT. F. WEINGARTNER
63
                           ADVISOR: PROF. D. WALTERS
 70
                                   JUN. 1987
80
90
100
110
         The computer program receives information from an acoustic
120
         array through an A-D converter. This information is the
130
         returned signal of an acoustic pulse as it passes through
140
         the atmosphere. The data is then used to display the return
150
         intensity with distance as a function of time. This is a
160
         short range device (from 150m to 200m).
170
183
190
      ! LIST OF VARIABLES
200
210
220
      ! I & K & J - counters for loops
230
240
      ! Rec_num & Nrec - real and integer representation of the
250
                             record number for storage
260
270
      ! Plotnum - counter used to insert form feeds between plots
280
200
     ! Disc_address$ - storage location of data file
300
310
      ! File3 - file name used to store data
320
      1 NO 3 Num - string and real representation of the number of
330
                    cycles and the number of points used in the
340
350
                     computation of the block average
363
370
     ! Point(*) - real number representing the noise and range
380
                    corrected average over given number of points
300
400
      ! Dat(*) - array of a-d converter output after sampling
410
```

```
420
       ! DZ(*) - array of reduced and averaged data including
 430
                  offset, correction for noise, and range
 440
                  corrections
 450
 460
      ! Hrs - the integer hours
 470
 480
      ! Min - the number of minutes
 490
 500
      ! Qtrhr & Qtrmin - keeps track of the passage of each
510
                           15 minute interval
520
530
      ! Num! - counter for computation of block averages
540
550
      ! Num2 - counter for the number of block averages made
560
570
      ! M - the counter used in the plot label routines
589
590
      ! Timent - time interval between data samples in
600
                   nanoseconds
610
620
630
      ! Kmax - total number of block averages computed
640
650
      ! Freq$ & Freq - the frequency input of the HP3314A in kilohertz
660
670
      ! Zone$ - the appropriate time zone the operator desires
639
690
      ! Site$ - the name of the appropriate site of data collection
700
      ! Save_plt & Cntrl - on/off toggles used to determine whether
710
723
                             a particular run will be saved to a disc
730
743
      ! Nplot - the number of increment along the entire
750
                  horizontal axis
760
770
      ! Offset - the computed O-C offset for the system prior
780
                  to data acquisition
730
800
     ! Noise - a running total of the moise accumulated at the
0:0
                 maximum range: used to find and remove the
823
                  average noise
330
840
     ! Limit - the upper bound on the noise figure used to insure
850
                  that large returns are not included in the
860
                 noise computations
370
830
     ! K1 - a counter of the number of traces used to determine
890
              the noise average
900
```

```
910
       I Samave - a sample average used in the computation of the
 920
                   D-C offset
 930
 940
       ! Off_ave - a toggle used to inhibit the firing of the
 950
                    HP3314A during D-C offsat computations
 960
 970
     ! Count$ & Cnt - the string and real representation of
 980
                         the number of data points to be taken
 990
 1000 ! Samfreq - the user input sampling frequency desired
 1010
1020 ! Tminc - 1 over the sampling frequency; the time between
1030 1
                  samples
 1040
1050 | Time$ - the string required by the A-D converter to
1060
                  sample at the desired rate
1070
1030 ! COkelvin - the speed of sound at 0 degrees celcius in m/s
1090
1100 ! Temp - temperature of the surroundings in degrees celcius
1110
1120 ! Spd - the speed of sound in air computed for the input
1130
                temperature
1140 !
1150 | Rspd - the relative speed of sound that the echosounder
1160 1
                sees which is half the computed speed
1170
1180
     ! Rdist - the distance traveled in one time increment ...
1190 1
1200 ! Maxrng - the maximum range of the echosounder found
1210 !
                  by multiplying the distance per time increment
1220
                  by the number of time increments
1230
1240 ! Exrng - the range rounded to the nearest value evenly
1250 !
                 divided by 15; used solely for plotting
1260
                 purposes
1270
1200 | Far - used to estimate the far field; this value keeps the
1230 1
               range correction from being applied to data very near
1200 +
                to the source
:3:0
1320
     I live the user input intensity level divisor; this value
1330 |
                sets the screen contrast in data return
1340 1
1350 ! Scale_y - the ratio of exrng to maxrng; this value is used
1360
                   to keep the plotted range of data accurate
1370
1380 ! Npoint & Npoint1 & Npoint2 - variables used to keep track of
1390 1
                                     time passage between pulses
1400 !
```

```
1410 | 72 & T1 & T0 - used to synchronize data collection with the
1420 1
                        clock
1430
     ! TIMEDATE - the internal clock of the computer
1440
1450
1460 ! Dvd - divisor of the data average; used because computer
               multiplication is faster than division
1470
1430
     ! R - the range of a block of data samples
1490
1500
     ! Run_ave - the running sum of the block samples
1510
1520
     ! X - the value of the data point less the D-C offset
1530
1540
1550 ! Ns - the final average of the block of data points; also
              used in the computation of the noise figure
1560 !
1570
     ! Corr - the noise correction applied to the data samples
1580
1530
     I Time - the horizontal position of the trace on the plot
1600
1610
     ! Timedist - the horizontal width of the trace on the plot
1620
1630
     ! End pt - the last point of the plot vertically taking
1640
                  into account the scaling factor scale_y
1650 !
1660
     ! Inc - The vertical increment along the plot
1670
1683
1690 ! Z - The final reduced data points which are output on the plot
1700
     ! Dis - The vertical height of the trace on the plot
1710
1720
1730 ! Ap$,Frq$,Nm$,En$,Vo$,Hz$ - strings needed to set the HP3314A
1740
     ! Amp$ - userv input amplitude for the HP3314A
1750
1760
     ! Pls_lng - the pulse length of the burst
1770
1780
     ! Ct(*) - the atmospheric temperature structure parameter
1700
1902
     \sim 1 Y \sim the number of traces used in computing \mathsf{Ct}(z)
1010
1020
1930 ! Ypl - the vertical position on the Ct plot
1840
     ! Pnt - the horizontal position on the Ct plot
1850
1860
1870 ! K3 - the wave number to the 1/3rd power
1880
1830 ! A ~ The area of the receiver (array)
1300
```

```
1910 | G - The effective aperature factor
 1920
1930 ! Er - efficiency of coversion of acoustical power
1940 !
               to electrical power on the recieve side
 1350
1960 ! Et - the efficiency of conversion of electrical
1970
               power to acoustical power on the transmit side
1380 1
1990 ! Pt - The computed transmitted power to the
2000
               acoustic array
2010
      Ţ
2020 ! Gain - the electronic gain of the equipment
2030
2040 ! Zimp - the speaker array impedence
2050
2060
2070
2000 OPTION BASE 1
2090
2100
2110
      ! initialize the arrays & set dimensions
2120 ! declare all integer variables
2130
2140
2150
        DIM Disc_address$[20],File$[30],Point(300),Ct(200)
2150
        INTEGER I, Hr, Plotnum, Print_key, Num, Num1, Num2, M, K
2170
        INTEGER Rec_num .Kmax
2180
        INTEGER D2(300),Dat(16301) BUFFER
2130
2200
2210 1
          initialization routines....set time, set HP3314A Function
2220
          Generator
2230
2240
2250 Rstrt:CALL Freq_init(Freq$,N$)
         CALL Init ad200
2250
2270
          CALL Set_time(Ione$)
2280
          INPUT "SITE NAME " .Sites
2200
          Save_plt=0
2200
          Chtrl=0
23:0
2320
2330
        ! keyboard set_up - sets labels on the computer function
2349
                              keys
2350
2360
2370
            OUTPUT KBD: "SCRATCH KEYE"; ! CLEAR THE KEYS
            CONTROL 2,2;1
2380
2330
            ON KEY ! LABEL "NEW
                                    TEMP" GOTO Speed
```

```
2400
             ON KEY 2 LABEL "INTENS.
                                      FACTOR" GOTO LV1
             ON KEY 4 LABEL "PRINT
                                       TRACE" GOTO Prt dmp
2410
             ON KEY 5 LABEL "SAVE NXT PLOT" GOTO SVPt
2420
              ON KEY 6 LABEL "CHANGE SMPL FRQ" GOTO Sfrq
2430
             ON KEY 7 LABEL "RESTART" GOTO Ratet
2440
2450
              ON KEY 8 LABEL "QUIT" GOTO Quit
2460
2470
2460
         ! Set constants
2430
2500
2510
          Disc_address$=":,700,1,0"
2520
          Maxrec=720
2530
          Nplot=900
2540
          Plotnum=1
2550
          Offset=0
2560
          GINIT
2570
          Noise=0
2580
          Limit=10
2590
          Y=3
2600
          K1=0
2610
          Samave=0
          A=.1140
2620
2630
          G=.4
2540
          Er=.498
2650
          Et=.496
          Gain=73126^2
2660
2670
          Zimp=12.12
2680
2G30
2700
             Input and calculation of terms used by the A-D converter and
2710
              the computation of range
2720
2730
2740
          PRINT "Enter the number of data points desired (max 16301)"
2750
          PRINT "Use increments of the number of cycles then add 1"
27G0
          PRINT "ex: (150 cycles X 100 data points/cycle)+1=15001"
2770
          PRINT "RECOMMEND USING MAX VALUE OF 16301"
2788
          INPUT Counts
2730
2000
          Output power computed assumed
2010
          ! Aamplifier settings
2020
2030
          Pt=(Et*(30^2))/(2*Zimp)
2840
2850 Sfrq:PRINT "Input the sampling frequency desired. This frequency will"
2860 - PRINT "determine the range of the sounder. Examples are:
          PRINT "
2870
                   SAM. FREQ. = 12500.....RANGE = 225 M"
          PRINT "
2880
                     SAM. FREQ. = 20000.....RANGE = 135 M"
2830
          INPUT "ENTER THE SAMPLE FREQUENCY", Samfreq
```

```
2900
           GCLEAR
 2910
           Tminc=1./Samfreq
           Timent=1000*INT(Tminc/1.E-6)
 2920
           TimeS="TIME "&VALS(Timent)
 2330
 2940
           Cnt=VAL(Count$)
 2950
           COkelvin=331.6
 2963
           Num=VAL(NS)
           Frea=VAL(Frea$)*1000
 2970
 2983
 2990
3000
         Computation of the D-C offset prior to program run
3010
3020
3030
       Off_ave=1
3040
      Offset=0
3050
       FOR I=1 TO 10
3060
            CALL Read_ad200(Dat(*),Count$,Time$,Off_ave)
            FOR K=1 TO (Cnt-1)
3070
3080
                Samave=Samave+Dat(K)
3090
            NEXT K
           PRINT "COMPUTING D-C OFFSET"
3100
3110
       NEXT I
3120
       Off_ave=0
3130
       Offset=Samave/(10*(Cnt-1))
       PRINT "OFFSET IS :",Offset
3140
3150 !
3160
3170
         computation of the speed of sound at a given temp and the
3180
         range of detection of the device
3190
3200
32:3 Speed:INPUT "Enter the temperature (calsius) ",Temp
3220
          Spd=C0kelvin*(SQR(1+(Temp/273)))
3230
          Rsod=Sod/2
3240
          Rdist=Tminc*Rspd
3250
          Maxrng=Cnt+Rdist
3260
          Exrng=((INT(Maxrng/30))+.5)*30.0
3270
          Far=1./(Tminc*Spd)
3260
          Lambda=Spd/Freq
3230
          K3=((2*PI)/Lambda)^(1/3)
3330
          Pls_ing=(Rspd*Num)/Freq
3310
          CALL Attenuation(Freq, Temp, Atten)
3323
3330
3340
          PRINT "Enter the relative intensity division level. This "
3350
          PRINT "value is used to determine the plot intensity by "
3360
          PRINT "dividing the block average sum by this number.
3370
          PRINT "This value is dependent upon the gain of"
          PRINT "the device and will probably need adjustment"
3330
3330
          PRINT "during run. Start with a value of about 4000"
3400
          PRINT Pt
```

```
3410 Lv1: INPUT IIv1
 3420
 3430
 3440
              set up the plot
 3450
 3460
 3470 Again: CALL Plot_setup(Nplot,Site$,Maxrng,Scale_y,Exrng,Zone$)
 3480
           Nrec=0
 3490
           FOR I=1 TO 200
 3500
             Ct(I)=0
 3510
           NEXT I
 3520
           Y=0
 3530
           Npoint1=0
 3540 OUTPUT KBD; "L";
 3550
 3560
 3570 Sync: ! synchronize data collection with clock
 3580
           T1=INT(TIMEDATE MCD 86400)
3590
           IF T1<T0 THEN T0=T0-86400
3600
           IF T1-TØ(1 THEN GOTO Sync
3610
           T0=T1
3620
3630
3643
               Data collection and reduction
3650
3560
3670 Read_sig:
                ! read the A-D converter
           CALL Read_ad200(Dat(*),Count$,Time$,Off_ave)
3689
3690
           Npoint=INT(T1 MOD 3600 MOD Nplot)
3700
           Npoint2=Npoint-Npoint!
3710
           Num1=Num-1
3720
           Num2=Cnt-Num
3730
           Dvd=1./(Num)
3740
           K=0
3750
3760
3773 FOR I=1 TO Num2 STEP Num
3780
           R=I*Rdist
3790
           IF I (Far THEN R=1
3800
           K = K + 1
3010
           Run_ave=0
3020
           FOR J=I TO I | Num1
3333
              X=Dat(J)-Offset
3849
              Run_ave=Run_ave+X * X
3850
           NEXT J
3860
           Ns=SQR(Run_ave*Dvd)
3870
           Point(K)=R*(Ns-Corr)
3880
           IF K1>10 THEN
3890
                Ct(K)=Ct(K)+((Point(K)^2)*EXP(2*R*Atten))
3300
                Ct(K)=(Ct(K)*((3.339E-8)^2)*Er)/Zimp
3310
           END IF
```

```
3320
            IF Point(K)>ABS(32767) THEN Point(K)=32767
 3930
            D2(K+10)=INT(Point(K))
 3940 NEXT I
 3950 IF K1>10 THEN
 3360
           Y=Y+1
 3970 END IF
 3380 !
 3990
 4000 !
           Noise correction routine
 4010 1
 4020 !
 4030
           IF Ns<(Limit+5) THEN
 4040
                Noise≃Noise+Ns
 4050
                K1=K1+1
 4050
                IF KI>10 THEN
 4070
                    Corr≈Noise/Kl
 4080
                    Limit=Corr
 4090
                ELSE
 4100
                    Corr=0
 4110
                END IF
4120
           END IF
4130
4140
4150
             Plotting of the data
4160
4170
4180 Kmax=K
4190 REDIM D2(Kmax+15)
4200 !
4210 ! positioning the data on the plot by time of trace
4220
4230 Time=(Npoint2/Nplot)*420
4240 Timedist=2+((Npoint2+Npoint1)/Nplot)*420
4250 IF Npoint!=0 THEN Time=5
4260 IF Npoint<6 THEN Timedist=6
4270 End_pt=Scale_y*260
4280 D2(2)=Kmax
4230 D2(3)=INT(Temp)
4300 D2(4)=INT(Time)
4310 D2(5)=INT(Timedist*10)
4320 WINDOW 0,420,0,260
4330 GRAPHICS ON
4340
4350 ! set the vertical increment
4360
4370 Inc=((Num*Tminc*Rspd*End_pt)/Maxrng)
4380 D2(6)=INT(Inc*1000)
4390 !
```

```
4400
      I compute the intensity of the return, move to the proper
4410 ! coordinates and plot the appropriate colored block
4420 1
4430 FOR K≠1 TO Kma×
4440
         Z=Point(K)/Ilv1
4450
         IF 2>1 THEN Z=1
4460
         IF Z<0 THEN Z=0
4470
         AREA INTENSITY Z.Z.Z
4480
         Dis=INT(K*Inc)+1
4490
         MOVE Timedist, Dis
4500
         RECTANGLE Time, Inc. FILL
4510 NEXT K
4520 !
4530 !
         keep an account of the trace numbers taken on the plot
4540
4550 Nrec=Nrec+1
4560 Rec_num=INT(Nrec)
4570 D2(1)=Rec_num
4580 Npointl=Npoint
4590
4600
4610 1
         save routine - if function key is set then
4620
                          the plot will be saved
4630
4640
4650 IF Cntrl=1 THEN
4660
          ASSIGN @File1 TO File1$
4670
          OUTPUT @File1,Rec_num;D2(*)
4680 END IF
4690
4700
4710
         graphics dump of plot after 15 minute intervals
4720
4730
4740 IF Timedist>415 THEN
4750 Prt_dmp:
              PRINTER IS 701
         PRINT "
4760
         PRINT "
4770
        PRINT "
4780
4790
        Plotnum=Plotnum: 1
4000
        DUMP GRAPHICS #701
4819
         FOR I=1 TO Kmax
4820
            Ct(I)=Ct(I)*((Temp+273)^2)*(t./.3033)*K3*(t./Y)
4830
            Ct(I)=Ct(I)*(1./(A*G))
4040
           Ct(I)=Ct(I)*(1./Pt)
4850
            Ct(I)=Ct(I)/Pis_lng
4860
            IF Ct(I)<1.0E-100 THEN Ct(I)=1.0E-100
4870
         NEXT I
4880
         !
```

*ĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊ*ĸĊĊ

```
4800
 4300
          ! CT^2 Computations and plots
 4910
4920
         1
4930
         GCLEAR
          VIEWPORT 15,120,15,80
4940
4950
         WINDOW 0,300,0,Exrng
         AXES 30,Exrng/15,0,0,30,Exrng/3
4960
4370
         CLIP OFF
         CSIZE 2..6
4980
4390
         LORG 6
5000
         FOR M=0 TO 300 STEP 30
5010
         MOVE M,-Exrng/45
5020
         LABEL "1.0E";((M/30)~10)
5030
         NEXT M
5040
         MOVE 140,-15
5050
         CSIZE 4
5060
         LABEL "LOG OF CT12"
5070
         LORG 8
5080
         FOR M=0 TO Exrng STEP INT(Exrng/3)
5090
            MOVE 0,M
5100
            LABEL M
5110
         NEXT M
         LDIR PI/2
5120
5130
         LORG G
5140
         MOVE -40 Exrng/2
5150
         CSIZE 4
5160
         LABEL "RANGE IN METERS"
         LDIR 0
5170
5180
         LORG 4
5190
         MOVE 150 Exrng+3
5200
         LABEL "TIME AVERAGED CT^2
                                        ":Site$
5210
         CLIP ON
5220
         MOVE 300.0
5230
         FOR I=1 TO Kmax
5240
            Ypl=(Maxrng/Kmax)*I
5250
            Pnt=(LOG(Ct(I))/2.3025851)+10
5260
            IF Pnt>10 THEN Pnt=10
            IF Pnt<0 THEN Pnt=0
5270
5200
            Pnt=Pnt+30
5200
            DRAW Pat Ypl
5300
         NEXT I
5310
         DUMP GRAPHICS #701
         PRINT "
5320
5330
         PRINTER IS CRT
5340
         GCLEAR
5350
         K1=10
5360
         Limit=Corr
5370
         Noise=10*Corr
```

```
IF Cntri=1 THEN
 5380
 5390
              ASSIGN @File! TO *
          END IF
5400
 5410
          Cntrl=0
5420
5430
          ! if the plot is to be saved, the file is created
5440
          ! and named
5450
5460
5470
         IF Save_plt=1 THEN
5480
5490
              CALL File_init(Disc_address$, Nrec,File1$)
5500
              Save_plt=0
5510
              Cntrl=1
         END IF
5520
5530
5540
5550
         ! start the next 15 minute plot
5560
5570
5580
         GOTO Again
5590 END IF
5600 !
5610
5620
      ! next trace
5630
5640
5650 GOTO Sync
5660
5670
5680 ! toggle set if plot is to be saved
5630
5700 1
5710 Svpt: Save_plt=1
5720
           GOTO Read_sig
5730
5740 |
5750 | completion routine
5750
5770 1
5700 Quit: STOP
5700
          END
5800
5810
6000
             SUBROUTINE SECTION
6010
6020
```

```
C030 SUB Freq_init(Freq$,N$)
 6040
6050
6060 !
             SETUP OF THE HP3314A FUNCTION GENERATOR
6070
6080
6090
         Ao$="AP"
6100
         Frq$="FR"
6110
         Nm$="NM"
6120
         En$≈"EN"
6130
         Vo$="VO"
6140
         Hz$="KZ"
         INPUT "FREQUENCY DESIRED (kHZ) (5 RECOMMENDED)", Freq$
6150
6160
         INPUT "AMPLITUDE DESIRED (V . .1.5V MAX) ", Amp$
6170
         IF VAL(Amp$)>1.5 THEN
6180
              Amp$="1.5"
6190
             PRINT "AMPLITUDE OF FUNCTION GENERATOR IS 1.5 V"
6200
         ENO IF
         INPUT "NUMBER OF CYCLES PER BURST (INTEGER) (100 RECOMMENDED)", NS
6210
6220
         OUTPUT 707; "MO3"
6230
         OUTPUT 707; "SR2"
6240
         OUTPUT 707; Ap$&Amp$&Vo$&Frq$&Freq$&Hz$&Nm$&N$&En$
6250 SUBEND
6260
6270
6280
6500 SUB Init_ad200
6510
6520
6530
      ! INITIALIZATION OF THE A-D CONVERTER
6540
6550 !
6550
         Ad_sel_code=17
6570
         Dummy=READIC(Ad_sel_code,3)
6580
         WRITEIO Ad_sel_code,0;0
6530
         CONTROL Ad_sel_code,0;1
6600 SUBEND
6610
6620
      ١
6630
```

```
7000 SUB Set_time(Zone$)
7010
7020
        SET THE TIME DATE RECORDER
7030
7040
7050 !
            PRINT "WHAT TIME REFERENCE ARE YOU USING? INPUT:"
7060
            PRINT *
7070
                        1 FOR UNIVERSAL TIME"
7080
            PRINT "
                        2 FOR LOCAL TIME"
            PRINT "
7090
                       3 FOR YOUR OWN CLASSIFICATION"
7100
            INPUT K
            IF K=2 THEN
7110
7120
                Zone$="(LOCAL)"
7130
            ELSE
7140
                IF K=3 THEN
7150
                     INPUT "WHAT IS YOUR TIME REFERENCE", Zone$
7160
                ELSE
7170
                     ZoneS="(UTC)"
                END IF
7180
7190
            END IF
7200
            IF TIMEDATE (DATE ("14 AUG 1984") THEN
                INPUT "ENTER ""DD MMM YYYY""" Dates
7210
                INPUT "ENTER ""HR:MIN:SC"", Time$
7220
7230
                SET TIMEDATE DATE(Date$)+TIME(Time$)
7240
                PRINT DATES(TIMEDATE), TIMES(TIMEDATE)
7250
                Tstart=TIMEDATE
7260
                T0=Tstart MOD 86400
7270
            END IF
7280 SUBENO
7299
7300
7310 !
```

```
7500
        SUB Read_ad200(INTEGER Dat(*) BUFFER, Count$, Time$, Off_ave)
7510
7520
7530
        ! INFOTEK A-D ROUTINE SET UP FOR EXTERNAL TRIGGER
7540
7550
           Ad_sel_code=17
7560
7570
7580
           !INITIALIZATION OF THE A-D CONVERTER
7590
7600
            OUTPUT Ad_sel_code; "RESET"
7610
            OUTPUT Ad_sel_code; "INTERNAL", "COUNT "&Counts."HOLDON"
7620
            OUTPUT Ad_sel_code; "DELAYON", "SELECT is! end", Time$
7630
            OUTPUT Ad_sel_code; "STATUS"
            ENTER Ad_sel_code;Resp$
7640
7650
            IF Resp$="----" THEN
7660
                ASSIGN @Ad200 TO Ad_sel_code; WORD
7670
7680
                  triggering of the HP3341A
7690
7700
               IF Off_ave=0 THEN
7710
                    TRIGGER 707
7720
               END IF
7730
               ASSIGN @Buf TO BUFFER Dat(*)
7740
               TRANSFER @Ad200 TO @Buf; WAIT
7750
               OUTPUT Ad_sel_code; " "
7760
               OUTPUT Ad_sel_code; "STATUS"
7770
               ENTER Ad_sel_code; Resp$
7780
               IF Resp$<>"----" THEN
7790
                    PRINT "ERROR= "; Resp$
7800
               END IF
7310
          ELSE
7820
             PRINT "ERROR DURING INITIALIZATION =":Resp$
7830
          END IF
7840
       SUBEND
7350
7860
7370
```

```
8000
        SUB Plot_setup(Nplot,Site$,Maxrng,Scale_y,Exrng,Zone$)
 8010
 8020
        ! SET-UP OF THE TIME PLOT ON THE CRT
 8030
 8040
 8050
 8060
             Scale_y=Maxrng/Exrng
             GRAPHICS ON
 3070
 8080
             LINE TYPE 1
8090
             VIEWPORT 15,120,15,80
8100
             WINDOW 0 Nolot 0 Exrno
8110
             AXES Nplot/15,Exrng/15,0,0,Nplot/3,Exrng/3
8120
             CLIP OFF
8130
             CSIZE 4,.6
8140
             LORG 6
8150
             T1=TIMEDATE MOD 86400
8160
             Hrs=T1 DIV 3600
8170
             T2=T1 MOD 3600
             Min=T2 DIV 60
8180
8190
            Qtrhr=Min DIV 15
            FOR M=0 TO Nplot STEP INT(Nplot/3)
8200
8210
                MOVE M,-Exrng/45
8220
                Qtrmin=Qtrhr+15+(M+3/Nplot)+5
                IF Qtrmin=60 THEN
8230
8240
                   Otrmin=0
8250
                   Hrs=Hrs+1
8260
                END IF
8270
               LABEL USING "DD,A,ZZ";Hrs;":";Qtrmin
8230
            NEXT M
8290
            MOVE Nplot/2,-15
8300
            LABEL "TIME "&Zones
8310
      I LABEL ORDINATE
8320
8330 !
8340
            LORG B
8350
            FOR M=0 TO Exrng STEP INT(Exrng/3)
8360
               MOVE 0 M
8370
               LABEL M
8330
            NEXT M
8330
            LDIR PI/2
3499
            LORG G
8410
            MOVE -Nplot/7,Exrng/2
8420
            LABEL "RANGE IN METERS"
8430 !
8440
         TITLE
     !
8450
     ţ
8450
            LDIR 0
8470
            LORG 4
8480
            MOVE Nplot/2,Exrng+3
```

\$

```
8490
            LABEL DATES(TIMEDATE):
                                      ":Site$
8500
            CLIP ON
8510
       SUBEND
8520
8530
8540
9000 SUB Attenuation(Freq.Temp.Atten)
9010
9020
9030 ! This subprogram calculates the attenuation of the
9040
      ! sound in air based upon equations in Neff 1975
9050 ! (source of subroutine: Thesis of R. Fuller)
9060 1
9070 ! Variables
9080
9090
      ! Atom_pres - input atmospheric pressure in mb
9100
9110
     ! Atten - attenuation coefficient of acoustic wave
9120
9130
     ! Att_max - Variable in program. It is the attenuation
9140
                    at the frequency of the maximum attenuation
9150
                    for the given input conditions.
9160
9170
     ! F - Ratio of the frequency to frequency at maximum
9180
              attenuation.
9190 !
9200 ! Fmax - Frequency of the maximum attenuation
9210
     ! H - variable used in the integration of excess attenuation
9220
9230
9240 ! Pstar - variable used in intermediate calculations
9250
     ! Tstar - variable used as an intermediate in calculation
9260
9270 |
                 of attenuation.
9280
9290 ! Wat_pres - Atmospheric water pressure in mb.
9300
9310 INPUT "Enter the atmospheric pressure in mb", Atom_pres
     INPUT "Enter the atmospheric water pressure in mb", Wat_pres
9330 H=100*Wat pres/Atom_pres
     Tstar=(1.8*Temp+492)/513
9340
9350 Pstar=Atom_pres/1014
9360 Fmax=(10+6600*H+44400*H*H)*Pstar/Tstar^.3
9370 Att_max=.0078*Fmax*Tstar^(-2.5)*EXP(7.77*(1-1/Tstar))
3380 F=Freq/Fmax
9390 Atten=(Att_max/304.8)*(C.18*FJ^2+(2*F*F/(1+F*F))^2)^.5
9400 Atten=(Atten+1.74E-10*Freq*Freq)/4.35
9410 SUBEND
```

```
9420 !
9430
9500 SUB File_init(Disc_address$,Nrec,File1$)
9510
9520
9530
         CREATE THE STORAGE FILE ON THE DISC FOR
9540
      !
         THE REDUCED DATA
9550
9560
         INPUT "ENTER THE REDUCED DATA GUTPUT FILENAME ",Files
9570
9580
         File1$=File$&Disc_address$
9590
         CREATE BOAT File1$,180,400
9600
         ASSIGN OFile! TO File!$
9610 I
9620 SUBEND
```

APPENDIX B

SPEAKER AND ARRAY ANALYSIS

In the design of our echosounder, it was determined that a rapid decay time was required to obtain accurate short range information. Weight restrictions involved with equipment transportation plus maximum response at high frequencies led to our decision to use piezo ceramic speakers. The Motorola KSN 1005A speaker was selected based on these requirements and the specifications charted in the Motorola catalog [Ref. 16] and reproduced below in Figures 23 through 25.

Fig. 23. Speaker Ratings

Typical Frequency Response

Fig. 24. Speaker Frequency Response

Dimensions: KSN 1005A, KSN 1003A

Fig. 25. Speaker Dimensions

The frequency response charts indicate that a maximum response for our speakers occurs at a resonant frequency of 5000 Hertz. This frequency was used as the baseline from which all our measurements are made.

Using the speakers in an anechoic chamber, the average e⁻¹ voltage decay time was measured to be approximately 900 µsec (Fig. 26). This decay time translates into a sound propagation distance of just over 15.0 centimeters (at STP) from the speakers. Considering our requirements, this speaker is ideally suited to serve our purpose.

Fig. 26. Speaker Decay Time Trace

B. ACOUSTIC ARRAY

Our next consideration was the echosounder array pattern. Ideally, the acoustic sources should be placed exactly one half wavelength apart. At a frequency of 5000 Hertz, this would require spacings of 3.4 centimeters (at STP) which is physically impossible for the speakers we have chosen. The closest possible spacing is 7.62 centimeters between sources after shaving off the flange of the horn (Fig. 25).

From Kinsler, et al. [Ref. 14], the equation for the directionality factor of a simple line array is derived as:

$$H(N,\theta) = \begin{cases} & sin (---kd sin \theta) \\ 1 & 2 \\ --- & N \\ sin (---kd sin \theta) \\ 2 \end{cases}$$

where

k is the wave number $(2\pi/\lambda)$,

d is the distance between sources,

N is the number of sources, and

 θ is the angle measured from a line perpendicular to the array to the direction of interest.

However, this equation assumes simple point sources which does not adequately describe our speakers. It was necessary to couple this equation to the directional factor for a

piston source which is also identified in Kinsler, et al. [Ref. 14: p. 108] as:

$$D(\theta) = \begin{cases} 2 & \text{Ji } (ka \sin (\theta)) \\ -----ka \sin (\theta) \end{cases},$$

where

k is still the wave number,

a is the radius of the piston source,

 θ is the angle measured from a line perpendicular to the array to the direction of interest, and

J1 (x) is a Bessel function of Order 1 with an argument x.

These two equations were combined together to form the equation of directionality for a linear array of piston sources, $L(N,\theta)$, by simple multiplication.

$$L(N,\theta) = H(N,\theta) \cdot D(\theta)$$

This equation was incorporated into a computer program, which may be found in Reference 3, and used to generate linear array patterns for various numbers of piston sources (Figs. 27 through 31).

It was concluded from these plots that five linear elements would provide the best combination of forward directionality, sidelobe suppression, physical size and a relatively low cost. Then, in order to enhance both array efficiency and symmetry, we settled on a five by five element array design with 7.26 centimeter spacing between

PRITERN FOR 4 ELEMENTS

-10

-10

-10

-10

-10

Fig. 27. Three Element Array

Fig. 28. Four Element Array

Fig. 29. Five Element Array

Fig. 30. Six Element Array

Fig. 31. Seven Element Array

speakers in both the vertical and horizontal directions.

After verifying the manufacturers polarity designation for 35 speakers, we obtained Lissajous plots for each individual speaker (Fig. 32). Based on the speaker's output to input voltage ratios as illustrated by these plots, we were able to rank all our speakers by signal efficiency. It was based upon this criteria that we selected the 25 most efficient speakers for the array, placing the best speakers at the center and subsequent ranking speakers further toward the sides and corners.

Fig. 32. Lissajous Plot

The 25 selected speakers were nounted in a five by five planar array on a balsa wood insulated bilayered sheet metal board. After wiring all the speakers in parallel, we surrounded all the electrical connections and speaker backs with two 3.0 centimeter layers of foam insulation sandwiching a 1.0 millimeter lead sheet. Then the entire array mounting was enclosed in a 44 by 44 by 5 centimeter sheet metal box. This design was chosen to suppress virtually all acoustic energy propagating out the rear hemisphere of the array, while shielding the array from any external electrical interference (Figs. 33 and 34).

Fig. 33. Array Photo

Fig. 34. Array Photo

APPENDIX C

ENCLOSURE DESIGN

Acoustic echosounding has proven to be an extremely useful technique for probing and analyzing the lower atmosphere. In order to most efficiently utilize the acoustic waves transmitted and later received by this remote sensing method, it is essential to have an efficient antenna with highly directive beams and strongly suppressed sidelobes. Antenna design becomes increasingly more important in a noisy environment where noise pollution within the sidelobes may dominate the desired signal within the main lobe. Hall and Wescott [Ref. 12] showed that sidelobe suppression improved with higher frequencies. Their studies showed that the measured 90 degree sidelobe suppression ranged from 38 dB at 1 KHz to 50 dB at 5 KHz. Furthermore, any significant improvement in sidelobe suppression could only be obtained by surrounding the antenna with an acoustic energy absorbing cuff or shroud.

In an effort to maximize our antenna main lobe to sidelobe power ratio, we intend to operate only at high frequencies as discussed in the previous section. Additionally, we have designed an acoustic energy absorbing enclosure. Many designs were considered based upon

previous research in the field of echosounding [Refs. 17 through 20]. In addition, we obtained the actual acoustic beam patterns for our array using a computer program written by LCDR Butler [Ref. 21] which we modified for our purposes. This modified version of LCDR Butler's program may be found in Reference 3. By rotating the array in an anechoic chamber, we were able to produce highly accurate polar plots of the array beam patterns (Figs. 35 and 36).

5 X 5 ACOUSTIC ARRAY BEAM PATTERN

R=3.60 M MIKE VT= 8.2465 INPUT=5.0 V FREQ=5.0 KHZ

Fig. 35. Polar Plot of 5 X 5 Array Beam Pattern

DIAGONAL 5 X 5 ACOUSTIC ARRAY BEAM PATTERN

R=3.60 M MIKE VT= 3.9497 INPUT=2.5 V FREQ=5.0 KHZ

Fig. 36. Polar Plot of 5 X 5 Array Beam Pattern at a 45° Aspect

These polar plots and the actual coordinates corresponding to the individual data points confirmed the computer prediction for the five element line array (Fig. 29). Additional polar plots obtained by varying both the input array voltage and range between array and microphone further support our claim that for a 5 KHz carrier frequency, the main lobe is confined to a divergence angle of 20 degrees. Since it is our aim to suppress all sidelobes and utilize solely the main lobe, we chose not to taper our enclosure as most previous researchers had. Rather we designed the enclosure based upon the dimensions of the array itself and the acoustic beams it generated.

Plywood was used for the construction of the enclosure and provided not only a rigid, inexpensive framework, but also proved to greatly attenuate external noise interference. Anticipating all kinds of weather conditions during data collection, the plywood enclosure was first waterproofed with four coats of marine varnish. Grooved joints, caulking and weather stripping were also design considerations.

A millimeter layer of lead can suppress an acoustic signal as much as 40 dB (Figs. 37 and 38). About 7.0 centimeters of corrugated, egg-carton design foam can suppress a signal another 3 to 4 dB (Figs. 37 and 39). Together they make an extremely efficient absorbing material for use in our enclosure.

Fig. 37. Response Reference, No Insulation

Fig. 38. Signal Suppression by Lead

Fig. 39. Signal Suppression by Foam

Lead-lined absorbing foam was glued to all inner surfaces of the enclosure with two 1.0 millimeter layers of lead overlapping at all corners. Strong aluminum brackets were used to connect the four side panels to each other as well as to the enclosure base (Figs. 40 through 42).

Fig. 40. Enclosure Photo, Fully Assembled

Fig. 41. Enclosure Photo, Interior

Fig. 42. Enclosure Photo, Base with Array

APPENDIX D

ECHOSOUNDER OUTPUT

Sixteen echosounder output traces were included to exhibit typical atmospheric activity. Many of the plots, such as the 14:45, 15:30, and the 17:30 of 26 April and the 10:00, 11:15, 13:00, 14:15, 15:15, 16:15, and the 17:15 of 27 April, have convective plumes which are prevalent whenever a heat flux between the surface and atmosphere exists. The plots of 18:15 and 19:15 on the 26th of April and of 18:00, 18:45 and 20:00 on the 27th of April clearly show the passage of the neutral event which is encountered when the atmospheric and surface temperature difference becomes negligible. Finally, the plot of 16:30 on 26 April can be associated with strong winds which exhibit a somewhat uniform return for all altitudes across the entire 15 minute interval of the trace.

The horizontal axis labels of the CT2 plots are small and may be hard to read. This axis is a log scale beginning with 1.10-10 at the left side of the plot and ending with 1.100 at the right side of the plot. Each tick mark moving left to right along this axis represents an integer increase in the exponent of 10.

AD-A184 972 DEVELOPMENT OF A DATA ANALYSIS SYSTEM FOR THE DETECTION 2/2
OF LOWER LEVEL AT (U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA M R WROBLEWSKI JUN 87
UNCLASSIFIED F/G 4/1 NL

END 70 M D11C

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

LIST OF REFERENCES

- Walters, D. L., "Atmospheric Modulation Transfer Function for Desert and Mountain Locations: ro Measurements," <u>Journal of Optical Society of America</u>, Vol. 71, No. 4, pp. 406-409, April 1981.
- 2. Walters, D. L., <u>Saturation and the Zenith Angle Dependence of Atmospheric Isoplanatic Angle Measurements</u>, paper presented at the SPIE Conference, April 1985.
- 3. Weingartner, Frank J., <u>Development of an Acoustic Echosounder for Detection of Lower Level Atmospheric Turbulence</u>, M. S. Thesis, Naval Postgraduate School, Monterey, California, June 1987.
- 4. McAllister, L. G., "Acoustic Sounding of the Lower Troposphere," <u>Journal of Atmospheric and Terrestial Physics</u>, Vol. 30, pp. 1439-1440, 1968.
- 5. Little, C. G., "Acoustic Methods for the Remote Probing of the Lower Atmosphere," <u>Proceedings of the IEEE</u>, Vol. 57, pp. 571-578, 1969.
- 6. McAllister, L. G., Pollard, J. R., Mahoney, A. R., and Shaw, P. J. R., "Acoustic Sounding A New Approach to the Study of Atmospheric Structure," <u>Proceedings of the IEEE</u>, Vol. 57, pp. 579-587, 1969.
- 7. Beran, D. W., Little, C. G., and Willmarth, B. C., "Acoustic Doppler Measurements of Vertical Velocities in the Atmosphere," <u>Nature</u>, Vol. 230, pp. 160-162, 1971.
- 8. Moulsley, T. J., Cole, R. S., Asimakopoulos, D. N., and Caughey, S. J., "Simultaneous Horizontal and Vertical Acoustic Sounding of the Atmospheric Boundary Layer."

 <u>Boundary Layer Meteorology</u>, Vol. 17, pp. 223-230, May 1979.
- 9. Asimakopoulos, R. S., Cole, R. S., Caughey, S. J., and Crease, B. A., "A Quantitative Comparison Between Acoustic Sounder Returns and the Direct Measurement of Atmospheric Temperature Fluctuations," Boundary Layer Meteorology, Vol. 10, pp. 137-147, 1976.

- 10. Neff, W. D., "Quantitative Evaluation of Acoustic Echoes from the Planetary Boundary Layer," NOAA Technical Report ERL 322-WPL 38, June 1975.
- 11. Tatarski, V. I., <u>The Effects of the Turbulent Atmosphere on Wave Propagation</u>, U. S. Department of Commerce, Washington, D. C., 1971; available from National Technical Information Service, Springfield, VA. 22161.
- 12. Hall Jr., F. F., and Wescott, J. W., "Acoustic Antennas for Atmospheric Echo Sounding," <u>Journal of the Acoustical Society of America</u>, Vol. 56, No. 5, pp. 1376-1382, November 1974.
- 13. Walters, Donald L., Naval Postgraduate School, Monterey, California. Personal Communication, 7 January 1987.
- 14. Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., <u>Fundamentals of Acoustics</u>, John Wiley and Sons, New York, 1982.
- 15. Fuller, Robert J., <u>Parametric Analysis of Echosounder Performance</u>, M. S. Thesis, Naval Postgraduate School, Monterey, California, September 1985.
- 16. Motorola Piezo Ceramic Speakers Catalog, Motorola Inc., Communications Systems Divisions, p. R29-5-1B, 1978.
- 17. Strand, O. N., "Numerical Study of the Gain Pattern of a Shielded Acoustic Antenna," <u>Journal of the Acoustical Society of America</u>, Vol. 49, No. 6 (Part 1), pp. 1698-1703, June 1971.
- 18. Adekola, S. A., "Toward a More General Integral Formulation of the Pressure Field of an Echosonde Aperture Antenna," <u>Journal of the Acoustical Society of America</u>, Vol. 60, No. 1, pp. 230-239, July 1976.
- 19. Adekola, S. A., "Concerning the Influence of Echo Carrier Frequencies and Antenna Dimensions on the Performance of Echosonde (Acoustic-Radar) Antennas,"

 Journal of the Acoustical Society of America, Vol. 62, No. 3, pp. 524-542, September 1977.
- 20. Adekola, S. A., and Davis, D. T., "The Effects of Phase-front Distributions on Echosonde Antenna Radiation Patterns," Radio Science, Vol. 12, pp. 11-22, January February 1977.

21. Butler, John D., <u>Development</u>, <u>Validation and Use of a Computer-Controlled System for the Investigation of Phase and Amplitude Shaded Acoustic Arrays</u>, M. S. Thesis, Naval Postgraduate School, Monterey, California, December 1986.

INITIAL DISTRIBUTION LIST

	NO. OI	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93943-5002	2
3.	Prof. Donald L. Walters Department of Physics (Code 61We) Naval Postgraduate School Monterey, CA 93943-5004	5
4.	Prof. Steven L. Garrett Department of Physics (Code 61Gt) Naval Postgraduate School Monterey, CA 93943-5004	1
5.	Commandant (G-PTE) U. S. Coast Guard 2100 2nd Street, S.W. Washington, D. C. 20593	2
6.	Commanding Officer U. S. Coast Guard Research and Development Center Avery Point Groton, CT 06340-6096 ATTN: LT. M. WROBLEWSKI	3
7.	Prof. Karlheinz E. Woehler Chairman, Department of Physics (Code 61Wh) Naval Postgraduate School Monterey, CA 93943-5004	1

END 10-81

DT10